If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x^2-7)=(2x^2+19)
We move all terms to the left:
(5x^2-7)-((2x^2+19))=0
We get rid of parentheses
5x^2-((2x^2+19))-7=0
We calculate terms in parentheses: -((2x^2+19)), so:We get rid of parentheses
(2x^2+19)
We get rid of parentheses
2x^2+19
Back to the equation:
-(2x^2+19)
5x^2-2x^2-19-7=0
We add all the numbers together, and all the variables
3x^2-26=0
a = 3; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·3·(-26)
Δ = 312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{312}=\sqrt{4*78}=\sqrt{4}*\sqrt{78}=2\sqrt{78}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{78}}{2*3}=\frac{0-2\sqrt{78}}{6} =-\frac{2\sqrt{78}}{6} =-\frac{\sqrt{78}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{78}}{2*3}=\frac{0+2\sqrt{78}}{6} =\frac{2\sqrt{78}}{6} =\frac{\sqrt{78}}{3} $
| 3d+6=5d+2 | | 8.4=3.76+–2y | | 6.7=z/9 | | 21x-10=3x | | 1.5+m=-1.75 | | 5.4=r-3.6 | | F(n)=-2.5n+76 | | 15u+u=24 | | 5a+4=49° | | 3.1a=15.5 | | x+5/10=12.8/x-3 | | 17p=56 | | 17p=90 | | 5a+8=32 | | 12•6x=792 | | 5(w-2)=w+6 | | 16+19n20=470 | | 2x3x=50 | | 6a+37=7a+35 | | 2v+19=16v+5 | | u=8u-56 | | 2x+8+4x-11=12 | | 3x+2=1/27 | | –64x2=–5 | | 16w+19=5w+41 | | 1f+14=19-3f | | a+78=6a-82 | | 8�=8x= −6(−2�−4)+8−6(−2x−4)+8 | | 8(z+3)=24 | | 3+4-40n1+6=16 | | 234-31x-x^2-66=0 | | −a+28= 1414 |